Spin axis evolution of two interacting bodies

نویسنده

  • J. Laskar
چکیده

We consider the solid-solid interactions in the two body problem. The relative equilibria have been previously studied analytically and general motions were numerically analyzed using some expansion of the gravitational potential up to the second order, but only when there are no direct interactions between the orientation of the bodies. Here we expand the potential up to the fourth order and we show that the secular problem obtained after averaging over fast angles, as for the precession model of Boué and Laskar [Boué, G., Laskar, J., 2006. Icarus 185, 312– 330] , is integrable, but not trivially. We describe the general features of the motions and we provide explicit analytical approximations for the solutions. We demonstrate that the general solution of the secular system can be decomposed as a uniform precession around the total angular momentum and a periodic symmetric orbit in the precessing frame. More generally, we show that for a general n-body system of rigid bodies in gravitational interaction, the regular quasiperiodic solutions can be decomposed into a uniform precession around the total angular momentum, and a quasiperiodic motion with one frequency less in the precessing frame.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spin and energy evolution equations for a wide class of extended bodies

Abstract. We give a surface integral derivation of the leading-order evolution equations for the spin and energy of a relativistic body interacting with other bodies in the post-Newtonian expansion scheme. The bodies can be arbitrarily shaped and can be strongly self-gravitating. The effects of all mass and current multipoles are taken into account. As part of the computation one of the 2PN pot...

متن کامل

Electronic Properties of a Concentric Triple Quantum Nanoring

In this paper, we study the electronic properties of a concentric triple quantum ring using exact diagonalization technique. The energy spectra and magnetization for a single electron and two electrons, in the presence of an applied magnetic field, are calculated and discussed. It is shown that, for two-interacting electrons, the period of Aharonov-Bohm oscillations decreases to the half of tha...

متن کامل

Generalized YORP evolution: Onset of tumbling and new asymptotic states

Asteroids have a wide range of rotation states. While the majority spin a few times to several times each day in principal axis rotation, a small number spin so slowly that they have somehow managed to enter into a tumbling rotation state. Here we investigate whether the Yarkovsky– Radzievskii–O’Keefe–Paddack (YORP) thermal radiation effect could have produced these unusual spin states. To do t...

متن کامل

Thermal negativity in a two qubit XXX and XX spin chain model in an external magnetic field

In this paper we studied the thermal negativity in a two-qubit XX spin ½ chain model and XXX spin1/2 chain model(isotropic Heisenberg model)spin-1/2 chain subjected to an external magnetic field inz direction. We calculate analytical relation for the thermal negativity for two qubit XX and XXX spinchain models in the external magnetic field. Effects of the magnetic field and temperature on then...

متن کامل

Secular spin dynamics of inner main-belt asteroids

Understanding the evolution of asteroid spin states is challenging work, in part because asteroids have a variety of orbits, shapes, spin states, and collisional histories but also because they are strongly influenced by gravitational and non-gravitational (YORP) torques. Using efficient numerical models designed to investigate asteroid orbit and spin dynamics, we study here how several individ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009